
The Periodic Table of the Elements

Introduction

Advanced level Chemistry is a demanding and exciting course. In order to be prepared for your start in September a number of areas from GCSE chemistry are needed to be 'known' thoroughly. To help you make the transition as smoothly as possible we have put together this series of exercises. When you start in September you will be expected to have completed the exercises within this booklet and know the material within. It is by no means ALL you need to know but the very foundations of the exciting journey you are about to start. If you have difficulties or confusions there are a number of suggested online resources you could try. There will be opportunities to discuss concerns with staff at the beginning of the year but you should have made significant headway independently.

This booklet contains some notes to act as a reminder. If you struggle with a particular area you should investigate the suggested support resources including your GCSE notes. There are exercises for you to complete, the answers are at the end.

Contents

Periodic Table 2
Topics
Writing formulae 4
Equations 7
Moles 10
Atomic Structure 15
Identifying Bonding and Structure types 19
Answers to exercises 20

Writing formulae

Objectives:

- Know the common ions
- Be able to construct formulae for common ionic substances
- Know the formulae of some common covalent substances

Common lons (you need to know these):

Positive ions		Negative ions	
Name	Formula	Name	Formula
Hydrogen	H^{+}	Chloride	Cl^{-}
Sodium	Na^{+}	Bromide	Br^{-}
Silver	Ag^{+}	Fluoride	F^{-}
Potassium	K^{+}	lodide	I^{-}
Lithium	Li^{+}	Hydroxide	OH^{-}
Ammonium	NH_{4}^{+}	Nitrate	NO_{3}^{-}
Barium	Ba^{2+}	Oxide	O^{2-}
Calcium	Ca^{2+}	Sulfide	S^{2-}
Copper(II)	Cu^{2+}	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Magnesium	Mg^{2+}	Carbonate	$\mathrm{CO}_{3}{ }^{2-}$
Zinc	Zn^{2+}		
Lead	Pb^{2+}		
Iron(II)	Fe^{2+}		
Iron(III)	Fe^{3+}		
Aluminium	Al^{3+}		

Putting together an ionic formula:

The charges must balance.
Molecular ions will need to be contained in brackets.

Potassium Oxide

Aluminium Hydroxide

\begin{tabular}{|c|c|c|c|}
\hline Potassium ion \& n K^{+} \& Oxide ion \&

\hline \multicolumn{4}{|c|}{There is 1+ and 2-}

\hline \multicolumn{4}{|c|}{So we need:}

\hline \multicolumn{4}{|c|}{$\mathrm{K}^{+} \mathrm{K}^{+}$to balance the O^{2-} Giving the formula}

\hline Aluminium ion \& Al^{3+} \& Hydroxide ion \& OH^{-}

\hline \multicolumn{4}{|c|}{There is 3+ and 1-}

\hline \multicolumn{4}{|c|}{So we need:}

\hline $\mathrm{OH}^{-} \mathrm{OH}$ \& Hiving

A \& nce the Al^{3+} mula \&

\hline
\end{tabular}

Exercise WF 1

Writing formulae from names:

1. Sodium chloride \qquad
2. Sodium hydroxide \qquad 12. Zinc(II) nitrate \qquad
3. Sodium carbonate \qquad 13. Silver bromide \qquad
4. Sodium sulfate \qquad 14. Iron(II) oxide \qquad
5. Magnesium chloride \qquad 15. Iron(III) oxide \qquad
6. Magnesium nitrate \qquad 16. Ammonium nitrate \qquad
7. Magnesium hydroxide \qquad 17. Ammonium sulfate \qquad
8. Aluminium chloride \qquad 18. Silver(I) sulfide \qquad
9. Aluminium sulfate \qquad 19. Aluminium oxide \qquad
10. Copper(II) Sulfate \qquad 20.Zinc(II) iodide \qquad

Some common substances you should know the formulae of:

Carbon Dioxide	CO_{2}	Carbon Monoxide	CO
Nitrogen monoxide	NO	Nitrogen dioxide	NO_{2}
Sulfur dioxide	SO_{2}	Sulfur trioxide	SO_{3}
Ammonia	NH_{3}	Methane	CH_{4}
Hydrogen sulphide	$\mathrm{H}_{2} \mathrm{~S}$	Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$
Hydrochloric acid	HCl	Sulfuric Acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$
Nitric Acid	HNO_{3}		

General rules for naming compounds:

If there are two elements present the name will end in -ide.
eg $\mathrm{Na}_{2} \mathrm{O} \quad$ Sodium Oxide
$\mathrm{MgCl}_{2} \quad$ Magnesium Chloride
$\mathrm{Mg}_{3} \mathrm{~N}_{2} \quad$ Magnesium Nitride
If the elements concerned can form more than one ion (transition metals) you will need to give the valency in brackets.

$$
\begin{array}{lll}
\text { e.g. } & \mathrm{PbCl}_{2} & \text { Lead (II) Chloride } \\
& \mathrm{PbCl}_{4} & \text { Lead (IV) Chloride }
\end{array}
$$

Where a compound contains a metal, anon-metal and oxygen it has a name ending in -ate.

e.g.	MgCO_{3}	Magnesium Carbonate
	FeSO_{4}	Iron (II) Sulphate
	KClO_{3}	Potassium Chlorate

Exercise WF 2

Writing names from formulae:

1. $\mathrm{H}_{2} \mathrm{O}$ \qquad
2. CO_{2} \qquad
3. NH_{3} \qquad
4. NaH \qquad
5. CH_{4} \qquad
6. HNO_{3} \qquad
7. NaNO_{3} \qquad
8. CaCl_{2} \qquad
9. SO_{2} \qquad
10. $\mathrm{Li}_{2} \mathrm{~S}$ \qquad 20. KAt \qquad

Equations

Objectives:

\# Be able to write word equations
f Be able to balance symbol equations

- Write balanced symbol equations from descriptions

Word equations:

You will very rarely be asked to write word equations at Advanced Level. This is because you are expected to always write balanced symbol equations. However, to be able to write the symbol equations you need to know your word equations first!

Some common reaction equations:

You can write general word equations for some common types of reaction.
Acid and alkali: \quad acid + alkali \rightarrow salt + water

- An example is:
hydrochloric acid + sodium hydroxide \rightarrow sodium chloride + water
Acid and metal oxide: acid + metal oxide \rightarrow salt + water
- An example is:
sulfuric acid + copper oxide \rightarrow copper sulfate + water
Acid and carbonate: \quad acid + carbonate \rightarrow salt + water + carbon dioxide
- An example is:
hydrochloric acid + calcium carbonate \rightarrow calcium chloride + water + carbon dioxide
Acid and metal:
acid + metal \rightarrow salt + hydrogen
- An example is:
sulfuric acid + zinc \rightarrow zinc sulfate + hydrogen
Metal and oxygen: metal + oxygen \rightarrow oxide
- An example is:
magnesium + oxygen \rightarrow magnesium oxide

Metal and sulfur:
 $$
\text { metal }+ \text { sulfur } \rightarrow \text { sulfide }
$$

- An example is:
iron + sulfur \rightarrow iron sulfide
Metal and water: \quad metal + water \rightarrow hydroxide + hydrogen
- An example is:
calcium + water \rightarrow calcium hydroxide + hydrogen
Combustion of hydrocarbon: fuel + oxygen \rightarrow carbon dioxide + water
- An example is:
methane + oxygen \rightarrow carbon dioxide + water

Exercise Eqn 1

Write word equations for the following reactions:

1. Aluminium reacting with sulfur
2. Copper burning in oxygen
3. Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ burning completely in oxygen
4. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ burning completely in oxygen
5. Lithium reacting with water
6. Magnesium reacting in nitric acid
7. Potassium oxidising in the air
8. The reaction of calcium hydroxide with hydrochloric acid
9. The reaction of sodium oxide with sulphuric acid
10. Zinc carbonate reacting with hydrochloric acid

Balancing equations

In a chemical reaction atoms are rearranged. They can't disappear or appear from nowhere. You must have the same number of each type of atom on each side of the equation. For clarification see:
http://www.sciencepass.com/2011/02/balancing-chemical-equations.html

Exercise Eqn 2

Write balanced equations for the above reactions

Exercise Eqn 3

Write balanced equations for the following reactions (including state symbols):

Remember:

(s) solid
(I) liquid
(g) gas
(aq) aqueous (dissolved in water)

1. Zinc metal reacts with copper(II) sulphate solution to produce solid copper metal and zinc(II) sulphate solution
2. Solid calcium hydroxide reacts with solid ammonium chloride on heating to produce solid calcium chloride, steam and ammonia gas.
3. When lead(II) nitrate is heated in a dry tube lead(II) oxide, nitrogen dioxide gas and oxygen are produced.
4. Silicon tetrachloride reacts with water to produce solid silicon dioxide and hydrogen chloride gas.
5. When octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ vapour is burnt with excess air in a car engine carbon dioxide and water vapour are produced through a complete combustion reaction.
6. All the halogens apart from fluorine react with concentrated sodium hydroxide solution to produce a solution of the sodium halide (NaX) and the sodium halite $\left(\mathrm{NaXO}_{3}\right)$ and water.
7. The elements of group 1 of the periodic table all react with water to produce a solution of the hydroxide of the metal and hydrogen gas
8. Tin(II) chloride solution reacts with mercury(II) chloride solution to produce a precipitate of mercury (I) chloride and a solution of $\operatorname{tin}(\mathrm{IV})$ chloride. This precipitate of mercury (I) chloride then reacts with a further tin(II) chloride solution to produce liquid mercury and more tin(IV) chloride.
9. Concentrated sulfuric acid reacts with solid potassium iodide to produce solid potassium hydrogen sulfate, iodine vapour, water and hydrogen sulphide gas.

Moles

Objectives:

- Define Mr
f Be able to calculate Mr
f Calculate reacting masses in reactions involving solids
f Know what concentration is
- Be able to calculate concentrations and volumes of solutions

M_{r} is the sum of the A_{r} 's of a substance. Therefore, if you know the formula of a substance you can calculate (using your Periodic Table) the Mr.
e.g. water has the formula $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}$ has an A_{r} of 1.0 and O has an A_{r} of 16.0.

Therefore the $M_{r}=1.0+1.0+16.0=18.0$

Exercise M 1 Calculate the Mr of the following substances

1. Barium Chloride
2. Sodium Hydride
3. Ammonium Nitrate
4. Calcium Sulphate
5. Barium Nitrate
6. Silver Oxide
7. Aluminium Sulphate
8. Fluorine
9. Sulphur Dioxide
10. Iron (II) Sulphate
11. Sodium Carbonate
12. Zinc Hydroxide
13. Potassium Oxide
14.Zinc
14. Carbon Dioxide
15. Hydrogen
16. Sulphur trioxide
17. Beryllium Hydroxide
18. Vanadium (V) Oxide
19. Copper (I) Oxide

Calculating the number of moles in a substance
A mole is the measurement of a given number of particles. It has the value : e.g.

1 mole of hydrogen molecules is $6.02 \times 10^{23} \mathrm{H}_{2}$ Molecules
2 moles of electrons, 12.04×10^{23} electrons 10 moles of lead(II) ions, $6.02 \times 10^{24} \mathrm{~Pb}^{2+}$
0.1 moles of zinc atoms, $6.02 \times 10^{22} \mathrm{Zn}$ atoms

To calculate the number of moles in a given mass:
Moles = Mass $/ \mathrm{Mr}_{\mathrm{r}}$
e.g. how many moles are there in 320 g of oxygen gas moles $=320 / 32=10$ moles of O_{2} molecules

Further help

Exercise M 2 Calculate the number of moles in the following:

1. 9.00 g of $\mathrm{H}_{2} \mathrm{O}$
2. 88.0 g of CO_{2}
3. 1.70 g of NH_{3}
4. 230 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5. 560 g of $\mathrm{C}_{2} \mathrm{H}_{4}$
6. 0.640 g of SO_{2}
7. 80.0 g of SO_{3}
8. 18.0 g of HBr
9. 0.0960 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. 3.15 g of HNO_{3}
11. 19.3 g of NaCl
12. 21.25 g of NaNO_{3}
13. 2.25 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
14. 0.800 g of NaOH
15. 17.75 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
16. 3.16 g of KMnO_{4}
17. 32.33 g of $\mathrm{K}_{2} \mathrm{CrO}_{4}$
18. 100 g of KHCO_{3}
19. 7.63 g of potassium iodide
20. 3.90 g of caesium nitrate

Exercise M 3 Calculate the mass of the following:

1. 2 moles of $\mathrm{H}_{2} \mathrm{O}$
2. 3 moles of CO_{2}
3. 8 moles of NH_{3}
4. 0.50 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
5. 1.2 moles of $\mathrm{C}_{2} \mathrm{H}_{4}$
6. 0.64 moles of SO_{2}
7. 3 moles of SO_{3}
8. 1 mole of HBr
9. 0.012 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$
10.0.15 moles of HNO_{3}
11.0.45 moles of NaCl
12.0.70 moles of NaNO_{3}
13.0.11 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
14.2.0 moles of NaOH
15.0.90 moles of $\mathrm{Na}_{2} \mathrm{SO}_{4}$
16.0.050 moles of KMnO_{4}
17.0.18 moles of $\mathrm{K}_{2} \mathrm{CrO}_{4}$
18.0.90 moles of KHCO_{3}
19.1.5 moles of KI
20.0.12 moles of CsNO_{3}

Reacting mass calculations and solution calculations:

$>$ Write a balanced chemical equation for the reaction (you are usually given this).
$>$ Write out the information given in the question under the equation beneath the appropriate chemical.
> You are always given enough information to work out how many moles there are of one reactant, so work it out.
> Using the chemical equation, find out how many moles of the other reactant this quantity reacts with.
> Use this to then find whatever quantity the question asked you to.

You will need to know the following key equations:

$$
\begin{aligned}
\text { concentration }\left(\mathrm{mol} / \mathrm{dm}^{3}\right) & =\underline{\text { moles }} \\
& \text { volume }\left(\mathrm{dm}^{3}\right)
\end{aligned}
$$

Worked example:

1) What mass of sulphur trioxide is formed from 96 g of sulphur dioxide?

$2 \mathrm{SO}_{2}$	\rightarrow	$2 \mathrm{SO}_{3}$
$\checkmark 96 \mathrm{~g}$		$?$

Moles of $\mathrm{SO}_{2} \quad=$ mass $/ \mathrm{M}_{\mathrm{r}}$
= 96/64.1
= 1.497 ...(keep this value in your calculator)
Moles of $\mathrm{SO}_{3} \quad$ use the ratio of molecules in the equation (2:2) = 1.497...
Mass of $\mathrm{SO}_{3} \quad=\mathrm{M}_{\mathrm{r}} \times$ moles
$=80.1 \times 1.497 \ldots$.
$=120 \mathrm{~g}$ (to 3 sig fig)
A little more help....

http://www.knockhardy.org.uk/ppoints htm files/molespps.pps\#357,21,Slide 21

Remember concentration is a measurement of how much is dissolved in a dm^{3} (a litre) This may be measure in $\mathrm{mol} \mathrm{dm}^{-3}$ (number of moles dissolved in a dm^{3}) or $\mathrm{g} \mathrm{dm}^{-3}$ (number of grams dissolved in a dm^{3})

Exercise M 4:

1) What mass of potassium oxide is formed when 9.75 g of potassium is burned in oxygen?

$$
4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}
$$

2) What mass of hydrogen is formed when 0.2 g of calcium reacts with hydrochloric acid?

$$
\mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}
$$

3) What mass of sodium is needed to reduce 1 kg of titanium chloride?

$$
\mathrm{TiCl}_{4}+4 \mathrm{Na} \rightarrow \mathrm{Ti}+4 \mathrm{NaCl}
$$

4) What mass of carbon monoxide is needed to reduce 1 kg of iron oxide to iron?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

5) What mass of oxygen is needed to burn 110 g of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

6) What mass of iron reacts with 14.2 g of chlorine?

$$
2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}
$$

7) 4.17 g of hydrated barium bromide crystals $\left(\mathrm{BaBr}_{2} . n \mathrm{H}_{2} \mathrm{O}\right)$ gave 3.72 g of anhydrous barium bromide on heating to constant mass. Work out the relative molecular mass (M_{r}) of the hydrated barium bromide and the value of n.

$$
\mathrm{BaBr}_{2} \cdot n \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaBr}_{2}+n \mathrm{H}_{2} \mathrm{O}
$$

Solution worked example

Question 1

1) $25.0 \mathrm{~cm}^{3}$ of a solution of sodium hydroxide solution required $21.50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid for neutralisation. Find the concentration of the sodium hydroxide solution.

$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$	$2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow$	$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$21.5 \mathrm{~cm}^{3}$	$25 \mathrm{~cm}^{3}$	
$0.100 \mathrm{~mol} / \mathrm{dm}^{3}$?	

Moles of sulphuric acid	$=c o n c \times \mathrm{vol} / 1000$
	$=0.100 \times 21.5 / 1000$
	$=2.15 \times 10^{-3} \mathrm{~mol}$
Moles of sodium hydroxide	$=4.30 \times 10^{-3} \mathrm{~mol}\left(\right.$ from the equation 2:1 ratio of NaOH to $\left.\mathrm{H}_{2} \mathrm{SO}_{\mathbf{4}}\right)$
Concentration of sodium hydroxide	$=\mathrm{mol} / \mathrm{vol}$
	$=4.30 \times 10^{-3} /(25 / 1000)$
	$=\mathbf{0 . 1 7 2 ~ \mathbf { ~ m o l } / \mathrm { dm } ^ { 3 }}$

Exercise M 5

1) $25.0 \mathrm{~cm}^{3}$ of a solution of sodium hydroxide solution required $21.50 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sulphuric acid for neutralisation. Find the concentration of the sodium hydroxide solution.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2) Find the volume of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid that reacts with $25.00 \mathrm{~cm}^{3}$ of 1.50 $\mathrm{mol} / \mathrm{dm}^{3}$ sodium hydroxide.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

3) $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide neutralises $19.0 \mathrm{~cm}^{3}$ of hydrochloric acid. Find the concentration of the acid.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

4) What volume of $0.040 \mathrm{~mol} / \mathrm{dm}^{3}$ calcium hydroxide solution just neutralises $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} / \mathrm{l}$ nitric acid?
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5) Find the mass of CaCO_{3} that is required to neutralise $2 \mathrm{dm}^{3}$ of $2 \mathrm{~mol} / \mathrm{dm}^{3}$ nitric acid.
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
6) $25.0 \mathrm{~cm}^{3}$ of $1.00 \mathrm{~mol} / \mathrm{dm}^{3}$ sodium hydroxide neutralises $21.2 \mathrm{~cm}^{3}$ of sulphuric acid. Find the concentration of the acid.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
7) What mass of magnesium metal just reacts with $100.0 \mathrm{~cm}^{3}$ of 2.00 M hydrochloric acid?

$$
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

8) $25.0 \mathrm{~cm}^{3}$ of 0.020 M sulphuric acid neutralises $18.6 \mathrm{~cm}^{3}$ of barium hydroxide solution. Find the concentration of the barium hydroxide solution.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

9) Calculate the concentration of the following solutions in mol/litre.
a) 3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in $12 \mathrm{dm}^{3}$ of water,
b) 36.5 mg of HCl in $10 \mathrm{~cm}^{3}$ of water,
c) 120 g of sodium hydroxide in 6 litres of water.
10) Calculate the number of moles of solute in:
a) $2500 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$ nitric acid,
b) $2 \mathrm{dm}^{3}$ of $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$ potassium hydroxide.

Atomic Structure (GCSE level)

Objectives:

- Identify the position, relative mass and relative charge of the three sub-atomic particles Give the number of any of the sub-particles for a given element (atom or ion)
- Define Atomic Number (Z)
- Define Mass Number (A)
- Give the simple electron arrangement for the first 38 elements on the periodic table
- Know how the periodic table is arranged
- Know the links between electronic structure and periodic table arrangement
- Know how ions are formed

GCSE Atomic Structure

The model of atomic structure you have been working with at GCSE will be developed further at Advanced Level. This does not mean the GCSE model is no longer of use. A thorough understanding and familiarity with this model is essential for you to be able to develop a number of Advanced Level concepts. But be warned, it will be developed, it is a model, it is not wrong, it just has limitations.

The atom is made up of three types of fundamental particles: protons, neutrons and electrons.

sub-atomic particle	relative mass	relative charge
proton	1	+1
neutron	1	0
electron	$1 / 1840$	-1

The atom is mostly empty space. It consists of a nucleus of protons and neutrons surrounded by electrons in orbitals/shells. Information about the number of particles in each atom can be found using the atomic number and mass number. What makes an atom individual is it's atomic number and therefore it's number of protons.

Atomic Number: Number of protons
 Mass Number: Number of protons + Number of neutrons

Atoms can be represented as follows:

> mass number Symbol atomic number \quad e.g. ${ }^{19} \mathrm{~F} \quad$ protons $=\ldots . . . \quad$ neutrons $=\ldots 10 . . \quad$ electrons $=9 . \ldots .$.

In a neutral atom the number of electrons will be the same as the number of protons. In an ion there are an altered number of electrons from the original number in the atom. For example Al ${ }^{3+}$ has lost 3 electrons so has 13 protons and 10 electrons, O^{2-} has gained 2 electrons so has 8 protons and 10 electrons.

WARNING: YOUR PERIODIC TABLE DOES NOT TELL YOU THE MASS NUMBER.

Exercise AS 1

Atom / ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
${ }_{9}^{19} \mathrm{~F}$					
${ }_{99}^{19} \mathrm{~F}^{-}$					
${ }_{13}^{27} \mathrm{Al}$					
${ }_{13}^{27} \mathrm{Al}^{3+}$				5	6
	15	31	8	8	10
		23	11		10
	18			22	18
	12	24			10

To see how the model of the atom has been developed and where you are heading if you can watch the following video clips:
The Atom - Clash of the Titans BBC Four with Professor Jim AI-Khalili
http://video.google.com/videoplay?docid=-4974977412862654856
Brian (oh so smiley) Cox on why atoms are full of space (hitting the physics-only for the very interested) http://www.bbc.co.uk/news/science-environment-16200089

Electron arrangement:

The electrons are arranged in shells/energy levels/orbitals.
The first shell holds a maximum of 2 electrons, the second shell holds a maximum of 8 electrons. The third shell initially holds a maximum of 8 electrons, you then add 2 electrons to the fourth shell, then come back and add a further 10 electrons to the $3^{\text {rd }}$ shell.

For example:

Sodium	$2,8,1$
Chlorine	$2,8,7$
Calcium	$2,8,8,2$
Scandium	$2,8,9,2$
Iron	$2,8,14,2$

On the periodic table:
The group number tells us how many electrons are in the outer shell.
The period number tells us how many shells there are.

'nok Iof əuop 								

Exercise AS 3

For each of the following, (a) draw the electrons in their shells and (b) state the electronic structure.
structure:

For each of the following particles, state what the particle is. The first one has been done for you.

Complete the table below:

Questio \mathbf{n}	Particle	Atomic number	Mass number	Protons	Neutron \mathbf{s}	Electron \mathbf{s}	Electron structure
$\mathbf{2 1}$			31	15		15	
$\mathbf{2 2}$		20			20	18	
$\mathbf{2 3}$		6			8	6	

Identifying structure and bonding types (GCSE)

Objectives:

Identify the most likely type of bonding in a substance
\| Identify the most likely structure type of a substance from a) formulae, b) properties

At GCSE level we are introduced to the concept that non-metals are held together (usually) by covalent bonds and that metal and non-metals are (usually) held together by ionic bonds. This will be developed further at advanced level. But let's get the GCSE sorted first!

Exercise SB 1

Substance	Type of elements within substance	Most likely bonding type
$\mathrm{H}_{2} \mathrm{O}$	Non-metal and Non-metal	Covalent
Hydrogen fluoride	Non-metal and Metal	Ionic
$\mathrm{K}_{2} \mathrm{O}$		
CH_{4}		
Magnesium Oxide		
Carbon Dioxide		
$\mathrm{Fe}_{2} \mathrm{O}_{3}$		

We can identify the most likely structure type (crystal structure) of a substance from its properties or its formula. If you are rusty on structure types:

Essential: http://www.chemsheets.co.uk/GCSEStructure11.doc

Helpful:
http://www.knockhardy.org.uk/gcse_htm_files/gbandspps.pps\#366,1,Slide 1

Exercise SB 2

What is the most likely structure type of these substances:

Substance	Melting point $\left({ }^{\circ} \mathbf{C}\right)$	Boiling point $\left({ }^{\circ} \mathbf{C}\right)$	Electrical conductivity as			Type of structure
		1560	solid	liquid	solution (aq)	

ANSWERS TO EXERCISES

Answers WF 1

Writing formulae from names:

1.	Sodium Chloride	NaCl	11. Copper (I) Oxide	$\mathrm{Cu}_{2} \mathrm{O}$
2.	Sodium Hydroxide	NaOH	12. Zinc Nitrate	$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
3.	Sodium Carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	13. Silver Bromide	AgBr
4.	Sodium Sulphate	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	14. Iron (II) Oxide	FeO
5.	Magnesium Chloride	MgCl 2	15. Iron (III) Oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
6.	Magnesium Nitrate	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	16. Ammonium Nitrate	$\mathrm{NH}_{4} \mathrm{NO}_{3}$
7.	Magnesium Hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	17. Ammonium Sulphate	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
8.	Aluminium Clhoride	AlCl_{3}	18. Silver Sulfide	$\mathrm{Ag}_{2} \mathrm{~S}$
9.	Aluminium Sulphate	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	19. Aluminium Oxide	$\mathrm{Al}_{2} \mathrm{O}_{3}$
10.	Copper (II) Sulphate	CuSO_{4}	20. Zinc lodide	ZnI_{2}

Answers WF 2

Writing names from formulae:

1. $\mathrm{H}_{2} \mathrm{O}$	Water	11. $\mathrm{Li}_{2} \mathrm{SO}_{4}$	Lithium Sulfate	
2. CO_{2}	Carbon Dioxide	12. CuSO_{4}	Copper Sulfate	
3.	NH_{3}	Ammonia	13. AgNO_{3}	Silver nitrate
4.	NaH	Sodium Hydride	14. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	Ammonium sulphate
5.	CH_{4}	Methane	15. $\mathrm{NH}_{4} \mathrm{VO}_{3}$	Ammonium vanadate
6. HNO_{3}	Nitric Acid	16. KMnO_{4}	Potassium Manganate	
7. NaNO_{3}	Sodium Nitrate	17. $\mathrm{K}_{2} \mathrm{CrO}_{4}$	Potassium Chromate	
8. CaCl_{2}	Calcium chloride	18. KI	Potassium lodide	
9. SO_{2}	Sulphur Dioxide	19. $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$	Cobalt Nitrate	
10. $\mathrm{Li}_{2} \mathrm{~S}$	Lithium Sulfide	20. Kat	Potassium Astatide	

Answers Eqn 1 and 2

Aluminium + Sulfur \rightarrow Aluminium Sulfide
Copper + Oxygen \rightarrow Copper (II) Oxide Ethane + Oxygen \rightarrow Carbon dioxide + Water
Ethanol + Oxygen \rightarrow Carbon dioxide + Water
Lithium + Water \rightarrow Lithium hydroxide + Hydrogen
Magnesium + Nitric acid \rightarrow Magnesium nitrate + Hydrogen
Potassium + Oxygen \rightarrow Potassium Oxide
Calcium Hydroxide + Hydrochloric acid \rightarrow Calcium chloride + Water
Sodium Oxide + Sulphuric acid \rightarrow Sodium Sulphate + Water
Zinc Carbonate + Hydrochloric acid \rightarrow Zinc chloride + Carbon dioxide + Water $\mathrm{ZnCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Answers Eqn 3

1. $\mathrm{Zn}(\mathrm{s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
2. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{NH}_{3}(\mathrm{~g})$
3. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{s})+2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
4. $\quad \mathrm{SiCl}_{4}(\mathrm{I})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+4 \mathrm{HCl}(\mathrm{g})$
5. $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+12 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
6. $3 \mathrm{X}_{2}+6 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 5 \mathrm{NaX}(\mathrm{aq})+\mathrm{NaXO}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Where X represents a halogen, no state symbol I given for X as it varies down the group.
7. $2 \mathrm{M}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{MOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ Where M represents a Group 1 metal.
8. STAGE 1: $\mathrm{SnCl}_{2}(\mathrm{aq})+2 \mathrm{HgCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{HgCl}(\mathrm{s})+\mathrm{SnCl}_{4}(\mathrm{aq})$

STAGE 2: $2 \mathrm{HgCl}(\mathrm{s})+\mathrm{SnCl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{SnCl}_{4}(\mathrm{aq})$
OVERALL: $\mathrm{SnCl}_{2}(\mathrm{aq})+\mathrm{HgCl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Hg}(\mathrm{I})+\mathrm{SnCl}_{4}(\mathrm{aq})$
9. $3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{S}) \rightarrow 2 \mathrm{KHSO}_{4}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

Exercise M 1

1.Barium Chloride	208.3	11. Sodium Hydride	24.0
2. Ammonium Nitrate	80.0	12. Zinc Hydroxide	99.4
3. Calcium Sulphate	136.2	13. Potassium Oxide	94.2
4. Barium Nitrate	261.3	14. Zinc	65.4
5. Silver Oxide	231.8	15. Carbon Dioxide	44.0
6. Aluminium Sulphate	342.3	16. Hydrogen	2.0
7. Fluorine	38.0	17. Sulphur trioxide	80.1
8. Sulphur Dioxide	64.1	18. Beryllium Hydroxide	43.0
9. Iron (II) Sulphate	151.9	19. Vanadium (V) Oxide	181.8
10. Sodium Carbonate	106.0	20. Copper (I) Oxide	143.0

Answer M2

10.50
140.020
22.0
150.125
30.10
160.020
45.0

520
60.010
170.167
71.0
181.0
190.046
80.22
200.020
90.0010
210.0010
220.25
100.050
230.02
110.33
240.0025
120.25
250.20
130.021
260.10

Answers M3

$136 \mathrm{~g} \quad 1480.0 \mathrm{~g}$
2132 g
347.6 g

423 g
533.6 g
15127.8 g
167.9 g
1734.92 g

1890 g
640.96 g

19249 g
7240 g
2023.4 g

881 g
2112.2 g
91.152 g
22672.4 g
109.45 g
1126.3 g
1259.5 g
230.296 g
2413.6 g
2543.68 g
2614.95 g

Answers M4 (Answers 1 to 6 to $\mathbf{3}$ sig fig)

1. $\quad 11.7 \mathrm{~g}$
2. $9.98 \times 10^{-3} \mathrm{~g}$
3. 484 g
4. 526 g
5. 400 g
6. 7.44 g
7. $\mathrm{n}=2$

Answers M5

Exercise AS 1

Atom / ion	Atomic number	Mass number	Number of protons	Number of neutrons	Number of electrons
${ }_{9}^{19} \mathrm{~F}$	9	19	9	10	9
${ }_{9}^{19} \mathrm{~F}^{-}$	9	19	9	10	10
${ }_{13}^{27} \mathrm{Al}$	13	27	13	14	13
${ }_{13}^{27} \mathrm{Al}^{3+}$	13	27	13	14	10
31 ${ }_{15} \mathrm{P}$	15	31	15	16	15
${ }_{5}^{11} \mathrm{~B}$	5	11	5	6	5
${ }_{5}^{16} \mathrm{O}^{2-}$	8	16	8	8	10
23 ${ }_{11} \mathrm{Na}^{+}$	11	23	11	12	10
40 ${ }_{18} \mathrm{Ar}$	18	40	18	22	18
${ }_{12}^{24} \mathrm{Mg}^{2+}$	12	24	12	12	10

Answers AS 3

1. $2,8,1$
2. 2,8
3. $2,8,3$
4. 2,8
5. 2,7
6. 2,8
7. 2,6
8. 2,8
9. O^{2-}
10. S
11. S^{2-}
12. Cl
13. Cl
14. Cl^{-}
15. Mg^{2+}
16. F^{-}
17. Fe^{2+}
18. Pb
19. N^{3-}
20. 1^{-}

Questio \mathbf{n}	Particle	Atomic number	Mass number	Protons	Neutron \mathbf{s}	Electron \mathbf{s}	Electron structure
$\mathbf{2 1}$	${ }_{15}^{31} \mathrm{P}$	15	31	15	16	15	$2,8,5$
$\mathbf{2 2}$	${ }_{20}^{40} \mathrm{Ca}^{2+}$	20	40	20	20	18	$2,8,8$
$\mathbf{2 3}$	14 6	6	14	6	8	6	2,4

Answers SB 1

Substance	Type of elements within substance	Most likely bonding type
$\mathrm{H}_{2} \mathrm{O}$	Non-metal and Non-metal	Covalent
Hydrogen fluoride	Non-metal and Metal	Ionic
$\mathrm{K}_{2} \mathrm{O}$	Metal and Non-metal	Ionic
CH_{4}	Non-metal and Non-metal	Covalent
Magnesium Oxide	Metal and Non-metal	Ionic
Carbon^{2} Dioxide	Non-metal and Non-metal	Covalent
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Metal and Non-metal	Ionic

Answers SB 2

Substance	Melting point (${ }^{\circ} \mathrm{C}$)	Boiling point (${ }^{\circ} \mathrm{C}$)	Electrical conductivity as			Type of structure
			solid	liquid	solution (aq)	
A	963	1560	does not conduct	conducts	conducts	IONIC
B	1063	2967	conducts	conducts	insoluble	METALLIC
C	123	187	does not conduct	does not conduct	insoluble	SIMPLE MOLECULAR
D	-7	59	does not conduct	does not conduct	does not conduct	SIMPLE MOLECULAR
E	3527	4027	does not conduct	does not conduct	insoluble	GIANT COVALENT
F	30	2397	conducts	conducts	insoluble	METALLIC
G	1713	2230	does not conduct	does not conduct	insoluble	GIANT COVALENT
H	-138	0	does not conduct	does not conduct	insoluble	SIMPLE MOLECULAR

